The Leap from Prototyping to Production: Additive Polymers Versus Injection Molding

img

If you were to ask those involved in product manufacturing who utilize additive polymers for prototyping, they would tell you the leap to additive for production usage is a big one. Perceptions around accuracy, repeatability, poor quality and labor-intensive post-printing make 3D printing a difficult consideration for production scale. This perception has been formed not because 3D printing technologies are actually inferior, but because part design needs industrial standards in place. This encompasses file processing all the way to post-processing methods that are required to improve material integrity, strength, and remove porosity to achieve the highest quality end product.

Even after 100 years of advancements in traditional manufacturing technologies, all parts have some type of imperfection from their method. For instance, in the manufacturing of injection-molded parts, issues often arise in calculations of shrinkage, tool draft, needed gates, and post-processing to remove flashing and surface treatment.

Additive components are no different, with similar imperfections and issues that can result in unsuitable end-use parts. However, additive designs actually provide more versatility with geometries not possible with conventional tooling and the potential for on-demand manufacturing. As the use of 3D printing is accelerating in terms of companies’ increased spending, greater ROI, and utilization of 3D printing as a competitive advantage (“State of 3D Printing”, Sculpteo, 2017), the next step toward large-scale production adoption requires a reality check.

The correct part design, good file processing, and the development of automated post-printing are the realities that, when addressed, will enable 3D printed parts to achieve repeatable, injection-molded quality for end-use. And with these end-use results, 3D printing will deliver significant cost savings in tooling and logistics over traditional manufacturing.